GLC

(f.l.t.r.) Dr. Thomas Zengerly, German Shell Holding, Jochen Sang, Daimler AG, Matthias Kallis, Daimler AG and Dr. Torsten Sevecke, City of Hamburg. Mercedes-Benz GLC F-CELL (combined hydrogen consumption: 0.34 kg/100 km, combined CO2 emissions: 0 g/km, combined electrical consumption: 13.7 kWh/100 km) Figures for fuel consumption, electrical consumption and CO2 emissions are provisional and were determined by the technical service for the certification process in accordance with the WLTP test method and correlated into NEDC figures. The EC type approval and a certificate of conformity with official figures are not yet available. Differences between the stated figures and the official figures are possible.
18C0915_601
Matthias Kallis (left), Daimler AG and Dr. Torsten Sevecke, City of Hamburg. Mercedes-Benz GLC F-CELL (combined hydrogen consumption: 0.34 kg/100 km, combined CO2 emissions: 0 g/km, combined electrical consumption: 13.7 kWh/100 km)
Figures for fuel consumption, electrical consumption and CO2 emissions are provisional and were determined by the technical service for the certification process in accordance with the WLTP test method and correlated into NEDC figures. The EC type approval and a certificate of conformity with official figures are not yet available. Differences between the stated figures and the official figures are possible.
18C0915_602
Matthias Kallis (left), Daimler AG and Dr. Thomas Zengerly, German Shell Holding. Mercedes-Benz GLC F-CELL (combined hydrogen consumption: 0.34 kg/100 km, combined CO2 emissions: 0 g/km, combined electrical consumption: 13.7 kWh/100 km)
Figures for fuel consumption, electrical consumption and CO2 emissions are provisional and were determined by the technical service for the certification process in accordance with the WLTP test method and correlated into NEDC figures. The EC type approval and a certificate of conformity with official figures are not yet available. Differences between the stated figures and the official figures are possible.
18C0915_603
Daimler is part of Hydrogen Mobility Europe (H2ME), a lighthouse project promoted by FCH JU which combines Europe's leading initiatives in the field of hydrogen mobility – in Germany, France, the United Kingdom and Scandinavia. Via H2ME, the FCH JU is promoting the expansion of a large-scale H2 filling station infrastructure and the development of fuel cell vehicles such as the GLC F-CELL with the goal of enabling emission-free driving all over Europe. Mercedes-Benz GLC F-CELL (combined hydrogen consumption: 0.34 kg/100 km, combined CO2 emissions: 0 g/km, combined electrical consumption: 13.7 kWh/100 km) Figures for fuel consumption, electrical consumption and CO2 emissions are provisional and were determined by the technical service for the certification process in accordance with the WLTP test method and correlated into NEDC figures. The EC type approval and a certificate of conformity with official figures are not yet available. Differences between the stated figures and the official figures are possible.
18C0915_606
Daimler is part of Hydrogen Mobility Europe (H2ME), a lighthouse project promoted by FCH JU which combines Europe's leading initiatives in the field of hydrogen mobility – in Germany, France, the United Kingdom and Scandinavia. Via H2ME, the FCH JU is promoting the expansion of a large-scale H2 filling station infrastructure and the development of fuel cell vehicles such as the GLC F-CELL with the goal of enabling emission-free driving all over Europe. Mercedes-Benz GLC F-CELL (combined hydrogen consumption: 0.34 kg/100 km, combined CO2 emissions: 0 g/km, combined electrical consumption: 13.7 kWh/100 km) Figures for fuel consumption, electrical consumption and CO2 emissions are provisional and were determined by the technical service for the certification process in accordance with the WLTP test method and correlated into NEDC figures. The EC type approval and a certificate of conformity with official figures are not yet available. Differences between the stated figures and the official figures are possible.
18C0915_607
Daimler is part of Hydrogen Mobility Europe (H2ME), a lighthouse project promoted by FCH JU which combines Europe's leading initiatives in the field of hydrogen mobility – in Germany, France, the United Kingdom and Scandinavia. Via H2ME, the FCH JU is promoting the expansion of a large-scale H2 filling station infrastructure and the development of fuel cell vehicles such as the GLC F-CELL with the goal of enabling emission-free driving all over Europe. Mercedes-Benz GLC F-CELL (combined hydrogen consumption: 0.34 kg/100 km, combined CO2 emissions: 0 g/km, combined electrical consumption: 13.7 kWh/100 km) Figures for fuel consumption, electrical consumption and CO2 emissions are provisional and were determined by the technical service for the certification process in accordance with the WLTP test method and correlated into NEDC figures. The EC type approval and a certificate of conformity with official figures are not yet available. Differences between the stated figures and the official figures are possible.
18C0915_608
Daimler is part of Hydrogen Mobility Europe (H2ME), a lighthouse project promoted by FCH JU which combines Europe's leading initiatives in the field of hydrogen mobility – in Germany, France, the United Kingdom and Scandinavia. Via H2ME, the FCH JU is promoting the expansion of a large-scale H2 filling station infrastructure and the development of fuel cell vehicles such as the GLC F-CELL with the goal of enabling emission-free driving all over Europe. Mercedes-Benz GLC F-CELL (combined hydrogen consumption: 0.34 kg/100 km, combined CO2 emissions: 0 g/km, combined electrical consumption: 13.7 kWh/100 km) Figures for fuel consumption, electrical consumption and CO2 emissions are provisional and were determined by the technical service for the certification process in accordance with the WLTP test method and correlated into NEDC figures. The EC type approval and a certificate of conformity with official figures are not yet available. Differences between the stated figures and the official figures are possible.
18C0915_609
Daimler is part of Hydrogen Mobility Europe (H2ME), a lighthouse project promoted by FCH JU which combines Europe's leading initiatives in the field of hydrogen mobility – in Germany, France, the United Kingdom and Scandinavia. Via H2ME, the FCH JU is promoting the expansion of a large-scale H2 filling station infrastructure and the development of fuel cell vehicles such as the GLC F-CELL with the goal of enabling emission-free driving all over Europe. Mercedes-Benz GLC F-CELL (combined hydrogen consumption: 0.34 kg/100 km, combined CO2 emissions: 0 g/km, combined electrical consumption: 13.7 kWh/100 km) Figures for fuel consumption, electrical consumption and CO2 emissions are provisional and were determined by the technical service for the certification process in accordance with the WLTP test method and correlated into NEDC figures. The EC type approval and a certificate of conformity with official figures are not yet available. Differences between the stated figures and the official figures are possible.
18C0915_611
Daimler is part of Hydrogen Mobility Europe (H2ME), a lighthouse project promoted by FCH JU which combines Europe's leading initiatives in the field of hydrogen mobility – in Germany, France, the United Kingdom and Scandinavia. Via H2ME, the FCH JU is promoting the expansion of a large-scale H2 filling station infrastructure and the development of fuel cell vehicles such as the GLC F-CELL with the goal of enabling emission-free driving all over Europe. Mercedes-Benz GLC F-CELL (combined hydrogen consumption: 0.34 kg/100 km, combined CO2 emissions: 0 g/km, combined electrical consumption: 13.7 kWh/100 km) Figures for fuel consumption, electrical consumption and CO2 emissions are provisional and were determined by the technical service for the certification process in accordance with the WLTP test method and correlated into NEDC figures. The EC type approval and a certificate of conformity with official figures are not yet available. Differences between the stated figures and the official figures are possible.
18C0915_612
Mercedes-Benz GLC F-CELL: Market launch of the world's first electric vehicle featuring fuel cell and plug-in hybrid Technology. Mercedes-Benz GLC F-CELL (combined hydrogen consumption: 0.34 kg/100 km, combined CO2 emissions: 0 g/km, combined electrical consumption: 13.7 kWh/100 km). Figures for fuel consumption, electrical consumption and CO2 emissions are provisional and were determined by the technical service for the certification process in accordance with the WLTP test method and correlated into NEDC figures. The EC type approval and a certificate of conformity with official figures are not yet available. Differences between the stated figures and the official figures are possible.
18C0915_002
Mercedes-Benz GLC F-CELL: Market launch of the world's first electric vehicle featuring fuel cell and plug-in hybrid Technology. Mercedes-Benz GLC F-CELL (combined hydrogen consumption: 0.34 kg/100 km, combined CO2 emissions: 0 g/km, combined electrical consumption: 13.7 kWh/100 km). Figures for fuel consumption, electrical consumption and CO2 emissions are provisional and were determined by the technical service for the certification process in accordance with the WLTP test method and correlated into NEDC figures. The EC type approval and a certificate of conformity with official figures are not yet available. Differences between the stated figures and the official figures are possible.
18C0915_003
Mercedes-Benz GLC F-CELL: Market launch of the world's first electric vehicle featuring fuel cell and plug-in hybrid Technology. Mercedes-Benz GLC F-CELL (combined hydrogen consumption: 0.34 kg/100 km, combined CO2 emissions: 0 g/km, combined electrical consumption: 13.7 kWh/100 km). Figures for fuel consumption, electrical consumption and CO2 emissions are provisional and were determined by the technical service for the certification process in accordance with the WLTP test method and correlated into NEDC figures. The EC type approval and a certificate of conformity with official figures are not yet available. Differences between the stated figures and the official figures are possible.
18C0915_004
Mercedes-Benz GLC F-CELL: Market launch of the world's first electric vehicle featuring fuel cell and plug-in hybrid Technology. Mercedes-Benz GLC F-CELL (combined hydrogen consumption: 0.34 kg/100 km, combined CO2 emissions: 0 g/km, combined electrical consumption: 13.7 kWh/100 km). Figures for fuel consumption, electrical consumption and CO2 emissions are provisional and were determined by the technical service for the certification process in accordance with the WLTP test method and correlated into NEDC figures. The EC type approval and a certificate of conformity with official figures are not yet available. Differences between the stated figures and the official figures are possible.
18C0915_005
Mercedes-Benz GLC F-CELL: Market launch of the world's first electric vehicle featuring fuel cell and plug-in hybrid Technology. Mercedes-Benz GLC F-CELL (combined hydrogen consumption: 0.34 kg/100 km, combined CO2 emissions: 0 g/km, combined electrical consumption: 13.7 kWh/100 km). Figures for fuel consumption, electrical consumption and CO2 emissions are provisional and were determined by the technical service for the certification process in accordance with the WLTP test method and correlated into NEDC figures. The EC type approval and a certificate of conformity with official figures are not yet available. Differences between the stated figures and the official figures are possible.
18C0915_006
Mercedes-Benz GLC F-CELL: Market launch of the world's first electric vehicle featuring fuel cell and plug-in hybrid Technology. Mercedes-Benz GLC F-CELL (combined hydrogen consumption: 0.34 kg/100 km, combined CO2 emissions: 0 g/km, combined electrical consumption: 13.7 kWh/100 km). Figures for fuel consumption, electrical consumption and CO2 emissions are provisional and were determined by the technical service for the certification process in accordance with the WLTP test method and correlated into NEDC figures. The EC type approval and a certificate of conformity with official figures are not yet available. Differences between the stated figures and the official figures are possible.
18C0915_007
Mercedes-Benz GLC F-CELL: Market launch of the world's first electric vehicle featuring fuel cell and plug-in hybrid Technology. Mercedes-Benz GLC F-CELL (combined hydrogen consumption: 0.34 kg/100 km, combined CO2 emissions: 0 g/km, combined electrical consumption: 13.7 kWh/100 km). Figures for fuel consumption, electrical consumption and CO2 emissions are provisional and were determined by the technical service for the certification process in accordance with the WLTP test method and correlated into NEDC figures. The EC type approval and a certificate of conformity with official figures are not yet available. Differences between the stated figures and the official figures are possible.
18C0915_008
Mercedes-Benz GLC F-CELL: Market launch of the world's first electric vehicle featuring fuel cell and plug-in hybrid Technology. Mercedes-Benz GLC F-CELL (combined hydrogen consumption: 0.34 kg/100 km, combined CO2 emissions: 0 g/km, combined electrical consumption: 13.7 kWh/100 km). Figures for fuel consumption, electrical consumption and CO2 emissions are provisional and were determined by the technical service for the certification process in accordance with the WLTP test method and correlated into NEDC figures. The EC type approval and a certificate of conformity with official figures are not yet available. Differences between the stated figures and the official figures are possible.
18C0915_100
Kersten Trieb, Senior Manager Special Purpose Vehicles, Diplomatic Sales, Direct Sales and Sales to public authorities, Mercedes-Benz Sales Germany, and Mark Bröcker (right), Head of Procurement, Remarketing/Car Dealership, DB FuhrparkService GmbH (German railways). Mercedes-Benz GLC F-CELL (combined hydrogen consumption: 0.34 kg/100 km, combined CO2 emissions: 0 g/km, combined electrical consumption: 13.7 kWh/100 km). Figures for fuel consumption, electrical consumption and CO2 emissions are provisional and were determined by the technical service for the certification process in accordance with the WLTP test method and correlated into NEDC figures. The EC type approval and a certificate of conformity with official figures are not yet available. Differences between the stated figures and the official figures are possible.
18C0915_104
Mark Bröcker, Head of Procurement, Remarketing/Car Dealership, DB FuhrparkService GmbH, took over one of the first GLC F-CELL in Berlin on behalf of the German railways. Mercedes-Benz GLC F-CELL (combined hydrogen consumption: 0.34 kg/100 km, combined CO2 emissions: 0 g/km, combined electrical consumption: 13.7 kWh/100 km). Figures for fuel consumption, electrical consumption and CO2 emissions are provisional and were determined by the technical service for the certification process in accordance with the WLTP test method and correlated into NEDC figures. The EC type approval and a certificate of conformity with official figures are not yet available. Differences between the stated figures and the official figures are possible.
18C0915_105
Mercedes-Benz GLC F-CELL: Market launch of the world's first electric vehicle featuring fuel cell and plug-in hybrid Technology. Mercedes-Benz GLC F-CELL (combined hydrogen consumption: 0.34 kg/100 km, combined CO2 emissions: 0 g/km, combined electrical consumption: 13.7 kWh/100 km). Figures for fuel consumption, electrical consumption and CO2 emissions are provisional and were determined by the technical service for the certification process in accordance with the WLTP test method and correlated into NEDC figures. The EC type approval and a certificate of conformity with official figures are not yet available. Differences between the stated figures and the official figures are possible.
18C0915_106
Mercedes-Benz GLC F-CELL: Market launch of the world's first electric vehicle featuring fuel cell and plug-in hybrid Technology. Mercedes-Benz GLC F-CELL (combined hydrogen consumption: 0.34 kg/100 km, combined CO2 emissions: 0 g/km, combined electrical consumption: 13.7 kWh/100 km). Figures for fuel consumption, electrical consumption and CO2 emissions are provisional and were determined by the technical service for the certification process in accordance with the WLTP test method and correlated into NEDC figures. The EC type approval and a certificate of conformity with official figures are not yet available. Differences between the stated figures and the official figures are possible.
18C0915_108
Michael Stein, Chief Financial Officer H2 Mobility, took over one of the first GLC F-CELL vehicles in Berlin on behalf of his Company. Mercedes-Benz GLC F-CELL (combined hydrogen consumption: 0.34 kg/100 km, combined CO2 emissions: 0 g/km, combined electrical consumption: 13.7 kWh/100 km). Figures for fuel consumption, electrical consumption and CO2 emissions are provisional and were determined by the technical service for the certification process in accordance with the WLTP test method and correlated into NEDC figures. The EC type approval and a certificate of conformity with official figures are not yet available. Differences between the stated figures and the official figures are possible.
18C0915_301
Enis Yaris, Head of Fleet Sales Mercedes-Benz Berlin (left) hands over one of the first GLC F-CELL vehicles to Michael Stein, Chief Financial Officer H2. Mercedes-Benz GLC F-CELL (combined hydrogen consumption: 0.34 kg/100 km, combined CO2 emissions: 0 g/km, combined electrical consumption: 13.7 kWh/100 km). Figures for fuel consumption, electrical consumption and CO2 emissions are provisional and were determined by the technical service for the certification process in accordance with the WLTP test method and correlated into NEDC figures. The EC type approval and a certificate of conformity with official figures are not yet available. Differences between the stated figures and the official figures are possible.
18C0915_302
Ronny Weber (left), Mercedes-Benz Berlin, hands over one of the first GLC F-CELL vehicles to Dr.-Ing. Klaus Bonhoff (right.), Managing Director National Organisation Hydrogen (NOW). Mercedes-Benz GLC F-CELL (combined hydrogen consumption: 0.34 kg/100 km, combined CO2 emissions: 0 g/km, combined electrical consumption: 13.7 kWh/100 km). Figures for fuel consumption, electrical consumption and CO2 emissions are provisional and were determined by the technical service for the certification process in accordance with the WLTP test method and correlated into NEDC figures. The EC type approval and a certificate of conformity with official figures are not yet available. Differences between the stated figures and the official figures are possible.
18C0915_500
Mercedes-Benz GLC F-CELL: Market launch of the world's first electric vehicle featuring fuel cell and plug-in hybrid Technology. Mercedes-Benz GLC F-CELL (combined hydrogen consumption: 0.34 kg/100 km, combined CO2 emissions: 0 g/km, combined electrical consumption: 13.7 kWh/100 km). Figures for fuel consumption, electrical consumption and CO2 emissions are provisional and were determined by the technical service for the certification process in accordance with the WLTP test method and correlated into NEDC figures. The EC type approval and a certificate of conformity with official figures are not yet available. Differences between the stated figures and the official figures are possible.
18C0915_001
Assembly line for the drive unit of the Mercedes-Benz GLC F-CELL in Kirchheim-Nabern. The assembly system is equipped with an intelligent control system. Visualisation, screw system and fitter together form an interactive unit. The fitter is given information about process steps, installation details and assembly instructions in visual form; the tool control system sets the required parameters; the data recorded are immediately transferred to the quality control chart.
18C0210_007
Assembly line for the drive unit of the Mercedes-Benz GLC F-CELL in Kirchheim-Nabern. The pre-assembled housing is attached to the overhead conveyor system for further assembly. For this purpose, it needs to be lifted up and moved into a horizontal position.
18C0210_011
Assembly line for the drive unit of the Mercedes-Benz GLC F-CELL in Kirchheim-Nabern. Further components are mounted, as here the DC-DC converter. All in all, some 250 components are necessary for the overall assembly.
18C0210_023
Development tests on the Mercedes-Benz GLC F-CELL drive unit in Kirchheim-Nabern; starting tests in freezing conditions with the drive unit tilted at different angles. In order to ensure the safety of the vehicle as a whole, more than 500 individual tests are undertaken as part of the testing programme for each new model at  Mercedes-Benz. In the case of electric vehicles, a range of further drive system-specific tests are added to the standard test procedure. Special cold-starting procedures have been devised for use at icy temperatures as low as minus 25 degrees Celsius, to ensure that the frozen system starts as quickly, efficiently and sparingly as possible. Such tests are extremely time-consuming, as the unit needs to go into the climatic chamber for about 12 hours after every start in freezing conditions in order to cool down from the operating temperature reached, before a new start test can be launched.
18C0210_055
Assembly line for the drive unit of the Mercedes-Benz GLC F-CELL in Kirchheim-Nabern. The fitting and checking of the cable harnesses completes the assembly of the drive unit.
18C0210_040
Development tests on the Mercedes-Benz GLC F-CELL drive unit in Kirchheim-Nabern; test engineers undertake measurements on the unit in the climatic chamber.
18C0210_057
The preproduction model of the new Mercedes-Benz GLC F-CELL - in addition to hydrogen, the all-electric variant of the popular SUV will also run on electricity.
18C0210_075
At the IAA International Motor Show 2017 in Frankfurt, Mercedes-Benz is presenting a preproduction model of the new Mercedes-Benz GLC F-CELL as the next milestone on the road to emission-free driving.In addition to hydrogen, the all-electric variant of the popular SUV will also run on electricity.
17C599_006
At the IAA International Motor Show 2017 in Frankfurt, Mercedes-Benz is presenting a preproduction model of the new Mercedes-Benz GLC F-CELL as the next milestone on the road to emission-free driving.
17C599_002
At the IAA International Motor Show 2017 in Frankfurt, Mercedes-Benz is presenting a preproduction model of the new Mercedes-Benz GLC F-CELL as the next milestone on the road to emission-free driving.In addition to hydrogen, the all-electric variant of the popular SUV will also run on electricity.
17C599_018
At the IAA International Motor Show 2017 in Frankfurt, Mercedes-Benz is presenting a preproduction model of the new Mercedes-Benz GLC F-CELL as the next milestone on the road to emission-free driving.In addition to hydrogen, the all-electric variant of the popular SUV will also run on electricity.
17C599_023
At the IAA International Motor Show 2017 in Frankfurt, Mercedes-Benz is presenting a preproduction model of the new Mercedes-Benz GLC F-CELL as the next milestone on the road to emission-free driving.In addition to hydrogen, the all-electric variant of the popular SUV will also run on electricity.
17C599_029
At the IAA International Motor Show 2017 in Frankfurt, Mercedes-Benz is presenting a preproduction model of the new Mercedes-Benz GLC F-CELL as the next milestone on the road to emission-free driving.Under the EQ product brand, the company is pooling its know-how related to intelligent electric mobility while offering a comprehensive e-mobility ecosystem of products, services, technologies and innovations.
17C599_035
At the IAA International Motor Show 2017 in Frankfurt, Mercedes-Benz is presenting a preproduction model of the new Mercedes-Benz GLC F-CELL as the next milestone on the road to emission-free driving.In addition to hydrogen, the all-electric variant of the popular SUV will also run on electricity.
17C599_027
H2.LIVE - The app for zero-emission drivers.The H2.LIVE App shows the current status of all hydrogen filling stations in Germany, and provides information about future developments.
17C599_043
Loading